
Beyond Text: An LLM Agent Approach to Multimodal Reference-Guided Image
Editing

Advait Gupta
University of Maryland- College Park

College Park, MD, USA
advait25@umd.edu

Rishie Raj
University of Maryland- College Park

College Park, MD, USA
rraj27@umd.edu

Nithin Skantha Murugan
University of Maryland- College Park

College Park, MD, USA
nithin10@umd.edu

Abstract

Current agentic image editing frameworks, such as
CoSTA*, GenArtist, and VISPROG, typically depend on ex-
plicit, text-based instructions and struggle with integrat-
ing indirect guidance from diverse modalities like audio
or reference images. Conversely, large multimodal models
(LMMs), including Meerkat, Next-GPT, and CoDi, exhibit
strong multimodal understanding but usually require exten-
sive end-to-end training and lack flexibility in task expan-
sion. To bridge this gap, we propose a novel LLM-driven
agent framework that handles indirect, multimodal instruc-
tions without dedicated agent retraining. Our approach em-
ploys a two-stage planning process: first, interpreting mul-
timodal inputs through targeted subtasks (e.g., VQA, Audio
QA) to extract key entities or attributes, and second, synthe-
sizing these elements with the user’s main prompt into a pre-
cise step-by-step editing program using pre-trained tools.
This modular approach enables complex, flexible editing
workflows grounded across modalities without extensive re-
training. Though demonstrated here for image editing, our
framework readily extends to other multimodal tasks, offer-
ing a scalable solution for sophisticated content manipula-
tion.

1. Introduction

The landscape of AI-driven image editing is undergoing
rapid transformation, with increasingly sophisticated de-
mands for nuanced and complex manipulations. While text-
to-image models [9, 12] have demonstrated remarkable ca-
pabilities in generating and modifying images from tex-
tual descriptions, they often falter when faced with com-

posite instructions requiring multi-turn editing or, crucially,
when guidance is provided through indirect multimodal ref-
erences. For instance, instructing a system to “replace the
object in the image that sounds like the provided audio clip
with the style of the reference image” presents a significant
challenge for current paradigms.

Agentic frameworks, such as VISPROG [7],
CoSTA* [6], and GenArtist [17], have emerged as a
promising direction. These systems excel at decomposing
complex tasks into manageable sub-problems and orches-
trating specialized AI tools to execute them. However, their
primary reliance on explicit, purely textual instructions
limits their ability to interpret and integrate richer, non-
textual cues from modalities like audio snippets or visual
exemplars. Consequently, they often struggle to ground
instructions that are implicitly defined by these external
references.

Concurrently, Large Multimodal Models (LMMs) like
MEERKAT [4], CoDi [15], and Next-GPT [18] have shown
strong prowess in joint multimodal understanding. These
models can often process and relate information from vari-
ous modalities. Nevertheless, they typically require exten-
sive end-to-end training on large-scale multimodal datasets
and can be less flexible in adapting to new tools or expand-
ing their task repertoire without significant retraining. This
monolithic nature can also make their decision-making pro-
cess less transparent and harder to debug.

The core challenge, therefore, lies in creating an im-
age editing system that is both versatile enough to under-
stand nuanced, indirect guidance from diverse modalities
and flexible enough to leverage a dynamic set of special-
ized tools without prohibitive retraining costs. How can
an AI agent effectively interpret what a user means when

The audio talks about
something that is lots on the
street so you need to remove
that particular thing from the
input image and also replace

the "CLOSED" signage in
input image with the current

status of the bar in text
reference.

Reference Text
Current all shops in town are
closed except bars and they

are completely open.

An audio which talks about
streets filled with people

INPUTS REFERENCES OURS GPT-4o CoDi NExT-GPT

Identify the animal in audio
between 6s-10s and then
recolor that animal in the
image to the color being
discussed below in the

reference text.

Reference Text
The vibrant green shoots

emerged from the dark earth.
Spring's promise, a fresh,

green awakening.

An audio which has the sound
of a rooster between 6s-10s

Figure 1. Qualitative comparison of Beyond Text with baseline models (GPT-4o, CoDi [15], Next-GPT [18]) on challenging image editing
tasks guided by indirect multimodal references. Top Row Example: The instruction involves removing an object described in an audio
reference (people on the street) and modifying signage text based on a textual reference indicating bars are open. Beyond Text correctly
interprets both multimodal inputs to achieve the desired edit, while baselines struggle with one or both aspects. Bottom Row Example:
This task requires identifying an animal (rooster) from a specific segment of an audio reference and then recoloring that animal in the main
image according to a color cue (”green”) provided in a separate text reference. Beyond Text successfully grounds the instruction across
these disparate modalities, unlike the baseline methods which often fail to integrate the audio and text cues correctly for the targeted edit.
These examples highlight Beyond Text’s enhanced capability in processing and integrating complex, indirect multimodal guidance.

they provide an audio cue or a reference image alongside a
textual prompt, and then translate that understanding into a
concrete sequence of editing actions?

To address this gap, we introduce Beyond Text, a novel
LLM-driven agent framework designed explicitly for image
editing tasks guided by indirect, multimodal instructions.
Our approach circumvents the need for dedicated agent re-
training or end-to-end LMM fine-tuning. The central hy-
pothesis of our work is that the advanced reasoning and
planning capabilities inherent in modern Large Language
Models (LLMs) can be harnessed to (1) interpret and disam-
biguate multimodal references R by decomposing the anal-
ysis into targeted subtasks, and (2) subsequently orchestrate
existing specialized tools T to achieve the desired edit.

Beyond Text effectuates this through a distinctive two-
stage planning architecture (illustrated in Figure 3):

1. Stage 1: Multimodal Reference Analysis Program
Generation: The LLM agent first receives the main
textual prompt Pmain and a set of multimodal refer-
ences R (e.g., images, audio clips, or descriptive texts).
It then generates an initial program, Progref analysis,
which calls upon specialized tools (e.g., Visual Question
Answering (VQA), Audio Question Answering (AQA),
etc.) to analyze these references. The goal is to extract
key entities, attributes, or other salient information Sref

that are critical for understanding the editing intent con-
veyed through the references.

2. Stage 2: Execution Program Generation: Armed with
the extracted structured information Sref from the ref-
erences and the original main prompt Pmain, the LLM

agent then synthesizes a precise, step-by-step editing
program, Progexec. This program specifies the se-
quence of image editing operations to be performed
by another set of specialized tools (e.g., object detec-
tors, segmentation models, inpainting tools, style trans-
fer models) to produce the final edited image.

This modular, program-based approach allows Beyond Text
to handle complex multimodal grounding and composi-
tional editing by leveraging existing, pre-trained specialized
models. It offers enhanced interpretability, facilitates eas-
ier debugging and extension with new tools or modalities,
and crucially, supports sophisticated content manipulation
guided by indirect cues without requiring extensive retrain-
ing of the core agent. Examples of the programs gener-
ated in each stage are depicted in Figure 3. While this work
primarily demonstrates the framework’s efficacy for image
editing, the underlying methodology is generalizable to a
broader range of multimodal tasks requiring nuanced inter-
pretation of diverse inputs. Our main contributions are:

• We propose Beyond Text a novel LLM-driven agent
framework that uniquely addresses image editing guided
by indirect, multimodal references (e.g., audio, images,
text) without requiring end-to-end retraining of the agent.

• We introduce a two-stage planning process: first, gen-
erating a reference analysis program to interpret multi-
modal inputs and extract salient information, and second,
generating an execution program to perform the image
editing using specialized tools.

• Our framework demonstrates how to leverage the rea-
soning capabilities of LLMs to explicitly ground tex-

Replace the animal in input image which is
present in image reference with the animal

whose voice is there in audio reference
between 5s and 10s and also detect the larger
animal from the text story in the input image

LLM

Supported Subtasks for
the reference extraction

(VQA, AQA, Audio
Trimming, etc.)

Generated Plan (G)
obj1 = ReferenceVQA(ref
image=r_1, question="What
animal is in this image?")
seg1=TrimAudioSegment (ref
audio=r_2,start time=5, end
time=10)
obj2 = ReferenceAQA(ref
audio=seg1, question= "What
animal makes this sound?”)
ans1 = ReferenceTextQA (r_3,
“What animals are present in
this text?”)
ans2 = ReferenceTextQA (ans1,
“Which animal is the bigger
one?”)

INPUTS

LLM

Reference Outputs obtained
after executing G

obj1 = ‘cat’

seg1= audio clip
obj2 = ‘hen’
ans1 = {’frog’, ‘lion’}
ans2 = ‘lion’

Supported Subtasks for the
image editing (REMOVE,

REPLACE, RECOLOR, etc.)

INPUT INSTRUCTION

Image Editing Plan (P)

REPLACE (‘cat’, ‘hen’)
DETECt (‘lion’)

Input Image Instruction

Reference Image (r_1) Reference Audio (r_2)

A long audio with
voices of different

animals including the
cluck of hen between
5s and 10s timestamp

Reference Text (r_3)

A lion met a frog. When a wildfire
swept their land, the frog, knowing
hidden paths, led the lion to safety.
The lion, in turn, used his strength

to protect the frog's home from
predators. Through this, they

learned courage and humility, and
became unlikely friends.

INPUTS STAGE 1 STAGE 2

Figure 2. The proposed two-stage agent process: Stage 1 uses an LLM plan (G) to extract information from multimodal references (image,
audio, text) via QA subtasks. Stage 2 synthesizes this extracted info with the main instruction to generate the final image editing plan (P)
which results in the final edited image.

tual instructions in information extracted from di-
verse modalities through targeted subtask execution be-
fore planning the final editing actions.

• We outline a modular and extensible architecture that fa-
cilitates the integration of various pre-trained unimodal
and multimodal tools, offering a practical pathway to-
wards more flexible and capable AI agents for complex
content creation and manipulation.

• We release a new benchmark dataset, MultiRefEdit-
Bench, specifically designed to evaluate image editing
systems on tasks involving indirect multimodal refer-
ences.

2. Related Work
Our research intersects with agentic frameworks, large mul-
timodal models, and multimodal grounding techniques.

2.1. Agentic Frameworks for Vision & Language
Tasks

Recent works leverage LLMs to automate tasks by or-
chestrating specialized tools. VISPROG [7] gener-
ates executable programs from text for visual tasks,
while CoSTA* [6] emphasizes cost-sensitive planning.
ViperGPT [14], HuggingGPT [13], and GenArtist [17] sim-
ilarly explore task decomposition but primarily handle ex-
plicit instructions. Our framework introduces dedicated
multimodal reference analysis, enhancing agent capability
for interpreting indirect cues before generating final execu-
tion plans.

2.2. Large Multimodal Models & Multimodal Un-
derstanding

LMMs like MEERKAT [4], Flamingo [2], GPT-4V [10],
and Gemini [5] achieve strong multimodal reasoning
through extensive training on large datasets. These models
demonstrate powerful capabilities but are less flexible and
require substantial retraining to adapt. Our modular agent

leverages components inspired by these models, maintain-
ing flexibility without extensive end-to-end retraining.

2.3. Multimodal Grounding & Instruction Follow-
ing

Multimodal grounding connects linguistic or cross-modal
cues to specific data elements, as seen in works like
MEERKAT [4], NExT GPT [18], and CoDi [15]. Unlike
implicit grounding learned by LMMs, our approach explic-
itly grounds instructions through intermediate QA steps be-
fore generating the final editing program, enhancing inter-
pretability and leveraging existing QA models effectively.

3. The Beyond Text Framework
This section details the architecture and operational flow of
our proposed Beyond Text framework. Our core design phi-
losophy is to empower a Large Language Model (LLM)
agent to first deeply understand indirect multimodal refer-
ences and then translate this understanding into precise im-
age editing actions, all without requiring specialized agent
retraining.

3.1. Framework Overview and Motivation
The primary challenge in advanced AI-driven image editing
is to move beyond explicit textual commands and enable
systems to understand instructions grounded in diverse, of-
ten indirect, multimodal references R = {r1, r2, . . . , rn}.
Each reference ri (be it an image, audio clip, or auxil-
iary text) provides cues that qualify or specify aspects of
a main textual instruction Pmain for editing an input im-
age Iin. For example, Pmain might state, ”change the ob-
ject’s color to match the one in the reference image r1” or
”remove the entity that produces the sound in audio refer-
ence r2.” Current agentic systems [6, 7, 17] primarily excel
with direct textual inputs, while Large Multimodal Models
(LMMs) [4, 15, 18], though capable of multimodal under-
standing, often require extensive training and offer less flex-

Table 1. Overview of Subtasks and Associated Tools

Stage 1: Reference Analysis Subtasks (Cref) Stage 2: Image Editing Subtasks (Cedit)
Subtask Name Tool Name Subtask Name Tool Name

ReferenceVQA GPT-4o DETECT GroundingDINO [8]
ReferenceAQA MEERKAT [4] REMOVE Stable Diffusion Erase [12]
ReferenceTextQA OpenAI o1 REPLACE Stable Diffusion Inpaint [12]
TrimAudioSegment pydub RECOLOR Stable Diffusion Search & Recolor [12]

REPLACE TEXT CRAFT [3] & EasyOCR [1] for extracting the text from image,
an LLM (GPT-4o) for analyzing this extracted text and is location
and giving updated text and corresponding location, DeepFont [16]
for extracting font information, Stable Diffusion Erase [12] for
removing text, python pillow library for writing new text.

REMOVE TEXT CRAFT [3] & EasyOCR [1] for extracting the text from image,
an LLM (GPT-4o) for analyzing this extracted text and is location
and giving updated text and corresponding location, DeepFont [16]
for extracting font information, Stable Diffusion Erase [12] for
removing text.

ibility for integrating varied specialized tools.

To bridge this gap, Beyond Text introduces a novel LLM-
driven agentic approach. It is specifically designed to inter-
pret these indirect multimodal instructions and orchestrate
a toolkit T of specialized pre-trained models without ne-
cessitating end-to-end agent retraining. At its heart, Beyond
Text employs a distinct two-stage planning and execution
process, managed by an LLM agent. This process is visu-
alized in Figure 2 which contains the structure of generated
programs and intermediate data as well.

The two stages are:

Stage 1: Intelligent Multimodal Reference Interpreta-
tion: This initial stage focuses on dissecting and under-
standing the provided multimodal references R within the
context of the main prompt Pmain. The LLM agent gener-
ates a reference analysis program, Progref analysis. Exe-
cuting this program utilizes various query and analysis tools
to extract specific, salient pieces of information, collectively
denoted as Sref . Crucially, each piece of information in
Sref is tagged with its source modality and a unique identi-
fier, facilitating precise grounding for the subsequent stage.
Stage 2: Grounded Execution Program Generation:
With the structured and tagged information Sref in hand,
the LLM agent, in this second stage, processes the original
main prompt Pmain again. This time, it can substitute the
abstract references in Pmain with the concrete information
from Sref . Based on this fully grounded understanding, the
agent synthesizes a precise execution program, Progexec,
which is a sequence of specific image editing commands
designed to modify Iin into the desired Iout.

This deliberate separation of interpretation and action al-
lows Beyond Text to systematically address the complexity
of indirect multimodal guidance.

3.2. Stage 1: Intelligent Multimodal Reference In-
terpretation

3.2.1. Mechanism and Program Structure
The core objective of Stage 1 is to transform the potentially
rich and ambiguous information within multimodal refer-
ences R into a concise, structured, and actionable set of
facts Sref , directly relevant to the editing goals stated in
Pmain. This involves the LLM agent analyzing Pmain to
identify phrases alluding to external references (ri ∈ R).
For each allusion, the LLM determines the specific informa-
tion required and the most suitable reference analysis sub-
task to extract it.

Based on this, the LLM generates Progref analysis as
a sequence of steps. Each step in this program typically
invokes a tool from the Reference Analysis Subtask Set
(Cref), specifying the reference data (an ri or an intermedi-
ate variable from a previous step) and necessary parameters
(e.g., a textual question). A key feature of Progref analysis

is how it designates and structures the outputs that directly
answer the queries posed by Pmain regarding the refer-
ences. The LLM is prompted such that:
• Output variables for steps yielding final, pertinent infor-

mation for Pmain are named using a specific convention,
such as ans1, ans2, etc. Intermediate results not di-
rectly answering a reference query in Pmain are assigned
other variable names (e.g., obj1, obj2).

• For each step that produces such a final answer
(e.g., assigned to ans1), the LLM also includes a
modality tag (e.g., ”image”, ”audio”, ”text”) within
the program step itself. This tag is intelligently assigned
to indicate the modality of the original reference ri from
which this specific piece of information was ultimately
derived. This tagging is crucial and persists even if inter-
mediate processing steps involved other modalities (e.g.,

using TextQA on an image caption would still result in an
”image” tag if Pmain referred to the reference image).

Outputs of program steps are assigned to variables, which
can be used in subsequent steps. The structure of
Progref analysis and the subsequent formation of Sref are
exemplified in Figure 3.

Upon execution of Progref analysis, only the outputs
from ’ans’ steps are collected into the structured informa-
tion set Sref . This set typically takes the form of a dictio-
nary or map, where each key is an answer id, and the
corresponding value is an object containing the extracted
value and its associated modality tag. For instance,
Sref might look like: {“ans1”: “value”: “cat”, “modality”:
“image” , ...}. This tagged, structured information is then
passed to Stage 2. The LLM’s ability to generate such struc-
tured programs, including the crucial tagging, is guided by
in-context learning from few-shot examples. The algorithm
for this stage is included in Appendix (Algorithm 1).

3.2.2. Supported Reference Analysis Subtasks (Cref)
This set defines the repertoire of operations available to the
agent for dissecting and understanding the multimodal ref-
erences. Our initial implementation includes, but is not lim-
ited to:
• ReferenceVQA(ref image, question): An-

swers a natural language question about a given
ref image.

• ReferenceAQA(ref audio, question): An-
swers a question about a ref audio clip.

• ReferenceTextQA(ref text, question):
Answers a question about a ref text.

• TrimAudioSegment(ref audio,
start time, end time): Extracts a specific
segment from an audio reference.

This toolkit is designed for extensibility, allowing future in-
tegration of more sophisticated analysis capabilities. The
tools used for each subtask is listed in Table 1.

3.3. Stage 2: Grounded Execution Program Gener-
ation

3.3.1. Mechanism and Program Structure
After Stage 1 has distilled the multimodal references into
the structured and tagged set Sref , Stage 2 translates the
user’s original intent in Pmain, now fully contextualized by
Sref , into a concrete image editing plan, Progexec. The
LLM agent receives Pmain and Sref . It re-analyzes Pmain,
and for each part that previously referred to an external ref-
erence, it now knows the concrete information using the
corresponding ‘value‘ from Sref , guided by the ‘answer id‘
and ‘modality tag‘. For example, if Pmain mentioned ”the
animal in the reference image” and Sref contains ‘”ans1”:
”value”: ”cat”, ”modality”: ”image” ‘, the LLM under-
stands this part of the prompt now refers to ”cat”.

ans1 = ReferenceTextQA(ref text=r_1, question="What

is the object being discussed?", modality_tag=text)

obj1=TrimAudioSegment (ref audio=r_2,start time=2,

end time=7)

ans2 = ReferenceAQA(ref audio=obj1, question=

"What object is in that audio?”, modality_tag=audio)

obj2 = ReferenceVQA (r_3, “What kinds of vehicle are

present in this image?”)

ans3 = ReferenceTextQA (obj2, “Which vehicle is the

bigger one?”, modality_tag=image)

“ans1”: “value”: “dog”, “modality”: “text”
“ans2”: “value”: “car”, “modality”: “audio”

“ans3”: “value”: “truck”, “modality”: “image”

REPLACE (‘car’, ‘truck’)
REMOVE (‘dog’)

DETECT (‘truck’)

Prompt
Replace the object from audio reference with the

larger vehicle present in the image reference and the

detect it. Also, remove the animal from text reference.

Figure 3. Exemplar programs part of the Beyond Text framework
as discussed in Section 3. Given an initial textual prompt and as-
sociated multimodal references (not explicitly shown here but im-
plied by r1, r2, r3 in the Progref analysis), Stage 1 generates and
executes Progref analysis to produce the structured, modality-
tagged information Sref . Stage 2 then utilizes Pmain (the orig-
inal prompt) and Sref to generate the final image editing plan,
Progexec. This figure illustrates the transformation from the ini-
tial prompt to the intermediate Sref and finally to the executable
Progexec.

With all references resolved, the LLM identifies the core
editing actions (e.g., replace, remove, detect) and translates
these grounded instructions into an ordered sequence of
commands from a predefined editing command set, Cedit.
This sequence forms Progexec. An example of such a
Progexec is shown in Figure 3 (see ’Image Editing Plan
(P)’). The generation of Progexec is guided by few-shot ex-
amples provided to the LLM, demonstrating how to map the
combined understanding of Pmain and Sref to the editing
command language. The algorithm for this stage is included

2 Subtasks
30

3 Subtasks
27

1 Subtask
20

Object Replacement

40

Object Recoloration

35
Object Detection

30

Object Removal

25

Text Replacement

20

Text Removal
11

Image only (I)

22

Image + Text (I+T)

17

Text only (T)

12

Image + Audio + Text (I+A+T)

10

Image + Audio (I+A)

8

Audio + Text (A+T)
5

Audio only (A)

3

Figure 4. Distribution of the MultiRefEditBench dataset. (Left) Distribution of the 77 tasks by the number of subtasks per task (1, 2, or 3
subtasks). (Center) Distribution of the 161 total subtask instances across six primary editing categories (e.g., Object Replacement, Object
Recoloration). (Right) Distribution of the 77 tasks based on the combination of reference modalities provided (Image only (I), Audio only
(A), Text only (T), and their various combinations like I+A, I+T, A+T, I+A+T).

in Appendix (Algorithm 2).

3.3.2. Supported Image Editing Commands (Cedit)
This set defines the elementary image manipulation opera-
tions the agent can command at a high level. Our initial set
includes:
• DETECT(object prompt): Detects and localizes an

object described by object prompt.
• REMOVE(object prompt): Removes the specified

object.
• REPLACE(target object prompt,
replacement object prompt): Replaces one
specified object with another.

• RECOLOR(object prompt,
color description): Changes the color of a
specified object.

• REPLACE TEXT(target text, new text): Re-
places specified text within the image.

• REMOVE TEXT(target text): Removes specified
text from the image.

These commands are abstract and assume the existence of
underlying specialized models capable of their execution.
The tools used to execute these subtasks can be seen in Ta-
ble 1.

3.4. Execution of Editing Plan
The generated Progexec is a simple, ordered list of high-
level editing commands. An execution engine then pro-
cesses this program sequentially. For each command in
Progexec (e.g., REPLACE(’cat’, ’hen’)), the en-
gine invokes the corresponding specialized image editing
tool from the toolkit T . For example, a REPLACE com-
mand might internally trigger an object detection tool to
find the ’cat’, a segmentation tool to create a mask, and then
an inpainting or generative fill tool with the prompt ’hen’
to perform the replacement. The output of one command

(the modified image) becomes the input for the next, until
all commands in Progexec are executed, yielding the final
edited image Iout.

4. Experiments & Results
This section details the experimental setup designed to eval-
uate our proposed two-stage agent framework, the evalua-
tion methodology employed, the baselines used for compar-
ison, and presents results on current version of the bench-
mark dataset.

4.1. Experimental Setup
Dataset To rigorously evaluate the agent’s ability to han-
dle diverse multimodal references and complex instruc-
tions, we are constructing a manually curated benchmark
dataset, named MultiRefEditBench. This dataset aims to
include over 150 unique image editing scenarios. Each sce-
nario consists of an input image (Iin), a main textual prompt
(Pmain), a set of multimodal references (R), and the ground
truth edited image (Igt). The dataset is designed to pro-
vide comprehensive coverage across all supported editing
subtasks (Cedit) and all combinations of reference modali-
ties (Image-only, Audio-only, Text-only, Image+Audio, Im-
age+Text, Audio+Text, Image+Audio+Text) with each task
having 1-3 subtasks. The construction of this benchmark is
currently underway and currently has around 77 tasks which
are used for evaluation. More details about the dataset con-
struction are included in Appendix 7. Figure 4 shows the
distribution of different types of tasks and references in the
current dataset.

4.2. Evaluation Criteria & Methodology
To assess the performance of our agent and the baselines,
we employ a rigorous human evaluation process, focusing
on the semantic correctness and fidelity of the final edited

Table 2. Results: Performance (A(T)) Across Editing Subtasks and Reference Types. Best ”Ours” performance per subtask (row-wise) is
in red, and best ”Ours” performance per reference modality (column-wise, if not already a row maximum) is in green.

Editing Subtask Beyond Text (Ours) Accuracy Baselines Accuracy
Img Aud Txt I+A I+T A+T I+A+T Avg. Ours CoDi tang2023codi GPT-4o Next-GPT wu2023nextgpt

REPLACE 0.93 0.87 0.95 0.85 0.94 0.86 0.83 0.91 0.31 0.76 0.30
RECOLOR 0.94 0.88 0.96 0.85 0.95 0.87 0.84 0.92 0.30 0.80 0.30
DETECT 0.96 0.90 0.97 0.87 0.95 0.88 0.86 0.93 X X X
REMOVE 0.94 0.87 0.96 0.85 0.95 0.89 0.85 0.92 0.30 0.79 0.31
REPLACE TEXT 0.91 0.85 0.91 0.82 0.88 0.88 0.80 0.88 0.15 0.45 0.14
REMOVE TEXT 0.92 0.86 0.92 0.82 0.91 0.87 0.81 0.89 0.18 0.68 0.18

image Iout with respect to the main prompt Pmain and the
provided references R.

Subtask-Level Scoring For each test case, human evalu-
ators assess the output of every individual editing subtask
implicitly performed (e.g., was the correct object identi-
fied based on the reference? Was the replacement accurate?
Was the detection correct?). Each subtask si within a task
T is assigned a score A(si) ∈ [0, 1]. A score of 1 indi-
cates full correctness, 0 indicates failure, and partial scores
(x ∈ (0, 1), e.g., 0.3, 0.5, 0.7, 0.9) are assigned based on
predefined criteria for partial success (e.g., correct object
replaced but with minor visual artifacts, correct detection
but slightly inaccurate bounding box). The predefined cri-
teria are the same as used by authors of CoSTA* [6].

Task-Level Accuracy The accuracy for a complete task
T , denoted A(T), is calculated as the mean correct-
ness score across all its constituent subtasks: A(T) =
1

|ST |
∑|ST |

i=1 A(si), where ST is the set of subtasks for task
T .

Overall Accuracy The final reported accuracy for a cat-
egory (e.g., all tasks involving REPLACE with audio+text
references) or the entire dataset is the average of the task-
level accuracies A(T) over all evaluated tasks in that cate-
gory or the dataset, respectively.

This multi-level evaluation provides a nuanced under-
standing of the agent’s performance, pinpointing failures at
both the subtask and overall task levels. More details about
the evaluation strategy are included in the Appendix 6.

4.3. Emphasis on Human Assessment
While automated metrics such as CLIP similarity [11] are
commonly employed in evaluating image generation and
editing tasks, we primarily rely on human evaluation to
assess the performance of Beyond Text for tasks involving
complex, multi-step, and indirect multimodal instructions.

The decision to prioritize human assessment stems from
the limitations of current automated metrics in capturing

the nuanced aspects of success in such scenarios. For in-
stance, CLIP scores may reflect overall visual similarity but
can often overlook critical local errors, semantic inconsis-
tencies arising from misinterpretation of indirect references
(e.g., an incorrect object identified from an audio cue), or
the subtle but incorrect application of an edit based on a vi-
sual reference. The complexity of grounding instructions
across multiple modalities and then executing a sequence
of edits means that a final image might be globally similar
to a target yet fail in specific, instruction-critical ways that
automated metrics might not penalize appropriately.

The COSTA paper [6] provides a detailed analysis, in-
cluding correlation studies (see Section 5.2 and Appendix J
in [6]), which indicate a weak correlation between CLIP
similarity scores and human judgments of accuracy for
complex, multi-turn editing tasks. Their findings show that
images with high CLIP similarity can still contain signifi-
cant errors as perceived by humans. Given that our frame-
work, Beyond Text, deals with an added layer of complex-
ity through indirect multimodal reference interpretation, we
anticipate similar, if not more pronounced, discrepancies.
Therefore, to ensure a robust and reliable assessment of
whether the agent correctly interprets and executes the full
intent behind the combined textual and multimodal instruc-
tions, human evaluation of semantic correctness and edit fi-
delity is indispensable.

4.4. Baselines

We compare our proposed agent against several state-of-
the-art models and frameworks:
1. CoDi [15] / Next-GPT [18]: Two great contenders sup-

porting series of different kinds of tasks and modalities
as inputs. We compare them on tasks which can be sup-
ported by them using the current mechanism.

2. GPT-4o: We test the ability of this VLM to perform the
editing task directly by providing all inputs (input im-
age, main prompt, text descriptions/transcriptions of ref-
erences) and evaluating the generated output image or its
description.

Comparisons are made only on the subset of tasks and ref-
erence types that each baseline can plausibly support. Un-

supported scenarios are marked appropriately in the results
tables.

4.5. Results and Analysis

Table 2 presents the quantitative outcomes of our Beyond
Text framework compared against various baselines across
different multimodal reference scenarios. The performance
of our agent (Ours) is broken down by the combination
of reference modalities used. Baselines are evaluated on
scenarios they can plausibly support, with ‘X’ denoting an
unsupported task.

Quantitative Performance Our results consistently
demonstrate that Beyond Text outperforms the baseline
approaches across nearly all evaluated scenarios and
editing subtasks. The two-stage approach, focusing first
on explicit multimodal reference interpretation (Stage 1)
before grounded execution planning (Stage 2), proves
highly effective in correctly understanding and applying
user instructions. Notably, performance on tasks involving
audio references (e.g., ’Aud’ or ’I+A’ columns) tends
to be slightly lower than those relying solely on image
or text references. This can be attributed to the inherent
complexities and potential ambiguities in interpreting audio
content compared to the more structured nature of visual
or textual information. However, even in these challenging
audio-grounded scenarios, Beyond Text maintains a signif-
icant advantage over baselines that struggle to incorporate
such indirect cues.

Qualitative Analysis Beyond quantitative metrics, qual-
itative examples provide crucial insights into the practi-
cal capabilities of Beyond Text. Figure 1 showcases sev-
eral successful editing instances achieved by our framework
across diverse and complex multimodal reference scenar-
ios, alongside comparative outputs from baseline methods.
These examples visually demonstrate Beyond Text’s supe-
rior ability to accurately interpret indirect guidance from
combined image, audio, and text references, leading to edits
that more faithfully reflect the user’s nuanced intent.

Summary of Results In summary, the experimental re-
sults validate the core hypothesis of our work: by explic-
itly dedicating a stage to interpreting multimodal references
before planning execution, Beyond Text achieves a supe-
rior understanding of complex, indirect instructions. This
leads to significantly improved performance in multimodal
reference-guided image editing compared to existing ap-
proaches. The framework’s modularity and reliance on
LLM reasoning offer a flexible and powerful paradigm for
tackling sophisticated content manipulation tasks.

4.6. Ablation Studies
To understand the contribution of key architectural deci-
sions in Beyond Text, we conducted several ablation studies.
We focus on the impact of our two-stage planning process.
1. Stage 1 Removed (Direct Execution Planning): In this

configuration, we bypass Stage 1 entirely. The LLM
agent is provided with the input image Iin, the main
prompt Pmain, and all raw multimodal references R di-
rectly. It is then tasked with generating the final image
editing plan (Progexec) in a single step, attempting to
interpret references and plan execution simultaneously.

2. Single-Stage Combined Planning: Here, while we
don’t entirely remove the concept of reference analysis,
we merge Stage 1 and Stage 2. The LLM agent is asked
to generate a single, unified program that interleaves ref-
erence analysis steps (like VQA, AQA) with image edit-
ing commands. The agent must manage the flow of in-
formation from reference analysis to editing within this
single plan.
Table 3 compares the overall accuracy of our full Beyond

Text framework against these two ablated versions.

Table 3. Ablation Study: Impact of Framework Stages on Overall
Accuracy.

Approach Configuration Overall Accuracy (%)
Beyond Text (Ours - Two Stages) 0.92%
Stage 1 Removed - Direct Execution Planning 0.65%
Single-Stage Combined Planning 0.73%

The results from these ablations demonstrate a signifi-
cant drop in accuracy for both ablated versions, underscor-
ing the importance of the dedicated reference interpretation
stage (Stage 1) and the structured two-stage approach for
handling complex multimodal instructions effectively. Re-
moving or overly simplifying the reference interpretation
process leada to increased ambiguity and misinterpretation
of the indirect multimodal cues, resulting in less accurate
final edits.

5. Conclusion
In this paper, we introduced Beyond Text, a novel LLM-
driven agent framework designed to address the critical
challenge of enabling AI image editing systems to inter-
pret and act upon complex instructions grounded in indirect
multimodal references—a common limitation in existing
agentic frameworks and large multimodal models. Our core
contribution is a distinct two-stage planning process: an ini-
tial stage for intelligent multimodal reference interpretation,
where an LLM agent generates a program to analyze refer-
ences (images, audio, text) and extract salient, modality-
tagged information; and a second stage that uses this struc-
tured information to ground the main textual prompt, en-

abling the synthesis of a precise execution program. Ex-
periments demonstrate that this explicit separation of in-
terpretation and execution allows Beyond Text to achieve
a superior understanding of nuanced, indirect instructions,
leading to more accurate and semantically consistent image
edits. The modular architecture of Beyond Text not only
facilitates easier debugging and extension but also offers a
practical, flexible pathway towards more capable AI agents.
While demonstrated for image editing, the underlying prin-
ciples of decomposing complex multimodal understanding,
explicit information grounding, and leveraging LLM rea-
soning for program synthesis are broadly applicable.

References
[1] Jaided AI. Easyocr. https://github.com/

JaidedAI/EasyOCR, 2020. 4
[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine

Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Men-
sch, Katherine Millican, Malcolm Reynolds, Roman Ring,
Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong,
Nando de Freitas Garcia, Oriol Vinyals, Andrew Zisserman,
and Karen Simonyan. Flamingo: a visual language model
for few-shot learning. In Advances in Neural Information
Processing Systems (NeurIPS), pages 23716–23736, 2022. 3

[3] Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun,
and Hwalsuk Lee. CRAFT: Character region awareness for
text detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
9365–9374, 2019. 4

[4] Sanjoy Chowdhury, Sayan Nag, Subhrajyoti Dasgupta,
Jun Chen, Mohamed Elhoseiny, Ruohan Gao, and Dinesh
Manocha. MEERKAT: Audio-visual large language model
for grounding in space and time, 2024. 1, 3, 4

[5] Gemini Team and Google. Gemini: A family of highly ca-
pable multimodal models, 2023. 3

[6] Advait Gupta, NandaKiran Velaga, Dang Nguyen, and
Tianyi Zhou. COSTA: Cost-sensitive toolpath agent for
multi-turn image editing, 2024. 1, 3, 7

[7] Tanmay Gupta and Aniruddha Kembhavi. Visual program-
ming: Compositional visual reasoning without training. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 14953–14962,
2023. 1, 3

[8] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun
Zhu, and Lei Zhang. Grounding DINO: Marrying DINO
with grounded pre-training for open-set object detection,
2023. 4

[9] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models, 2022. 1

[10] OpenAI. Gpt-4v(ision) system card. https://cdn.
openai.com/papers/GPTV_System_Card.pdf,
2023. 3

[11] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In Proceedings
of the 38th International Conference on Machine Learning
(ICML), pages 8748–8763. PMLR, 2021. 7

[12] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, 2022. 1, 4

[13] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. HuggingGPT: Solving
ai tasks with chatgpt and its friends in hugging face, 2023. 3

[14] Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. ViperGPT:
Visual inference via python execution for reasoning. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 19957–19968, 2023. 3

[15] Zineng Tang, Ziyi Zhang, Zhitong Liu, Yougan Jiang,
Yingyan Wang, Wenchang Wang, Zili Luo, Ze Liu, Jing Liu,
Michael Zeng, Weiming Chen, and Yong Zhang. CoDi: Any-
to-any generation via composable diffusion, 2023. 1, 2, 3, 7

[16] Zhangyang Wang, Jianchao Yang, Hailin Jin, Eli Shechtman,
Aseem Agarwala, Jonathan Brandt, and Thomas S. Huang.
Deepfont: Identify your font from an image, 2015. 4

[17] Zhenyu Wang, Aoxue Li, Zhenguo Li, and Xihui Liu.
GenArtist: Multimodal llm as an agent for unified image
generation and editing, 2024. 1, 3

[18] Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng
Chua. Next-GPT: Any-to-any multimodal llm, 2023. 1, 2, 3,
7

https://github.com/JaidedAI/EasyOCR
https://github.com/JaidedAI/EasyOCR
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://cdn.openai.com/papers/GPTV_System_Card.pdf

Beyond Text: An LLM Agent Approach to Multimodal Reference-Guided Image
Editing

Supplementary Material

Table 4. Predefined Rules for Assigning Partial Correctness Scores
in Human Evaluation (identical to COSTA [6], Table 8).

Task Type Evaluation Criteria Assigned Score

Image-Only Tasks Minor artifacts, barely noticeable distortions 0.9
Some visible artifacts, but main content is unaffected 0.8
Noticeable distortions, but retains basic correctness 0.7
Significant artifacts or blending issues 0.5
Major distortions or loss of key content 0.3
Output is almost unusable, but some attempt is visible 0.1

Text+Image Tasks Text is correctly placed but slightly misaligned 0.9
Font or color inconsistencies, but legible 0.8
Noticeable alignment or formatting issues 0.7
Some missing or incorrect words but mostly readable 0.5
Major formatting errors or loss of intended meaning 0.3
Text placement is incorrect, missing, or unreadable 0.1

6. Human Evaluation Methodology for Accu-
racy Calculation

To ensure a robust and reliable assessment of our frame-
work’s performance, particularly for tasks involving com-
plex, multi-step, and indirect multimodal instructions, we
employ a detailed human evaluation process to calculate ac-
curacy. This methodology is consistent with the approach
detailed in COSTA [6] (see Appendix B in [6]). Automated
metrics often fall short in capturing nuanced errors, seman-
tic inconsistencies, or the successful interpretation of indi-
rect cues in such complex scenarios. Human evaluation,
therefore, provides a more faithful measure of task success.
This section outlines our evaluation methodology, including
scoring criteria and the aggregation process for determining
overall performance.

6.1. Subtask-Level Accuracy Scoring

For each test case, human evaluators meticulously assess
the output corresponding to every individual editing sub-
task si implicitly or explicitly performed within a broader
task T . The objective is to determine if each subtask (e.g.,
correctly identifying an object based on an audio reference,
accurately applying a color from an image reference, suc-
cessfully executing a removal) was completed as intended
by the main prompt Pmain and the provided multimodal
references R.

Each subtask si is assigned a correctness score, A(si),

based on the following scale:

A(si) =



1, if the subtask is completed fully and correctly.
x, if the subtask is partially correct, where

x ∈ {0.1, 0.3, 0.5, 0.7, 0.8, 0.9}.
0, if the subtask execution failed entirely or

produced an unusable/incorrect result.
(1)

The specific value for partial correctness (x) is determined
using a predefined set of task-specific criteria. These crite-
ria, detailed in Table 4, ensure consistency in scoring across
different types of editing operations and evaluators.

6.2. Task-Level Accuracy Calculation
The accuracy for a complete task T , denoted as A(T), is
calculated as the arithmetic mean of the correctness scores
A(si) of all its constituent subtasks ST = {s1, s2, . . . , sk}:

A(T) =
1

|ST |
∑

si∈ST

A(si) (2)

This approach ensures that the task-level accuracy provides
a comprehensive reflection of the performance across all re-
quired editing steps involved in fulfilling the user’s complex
instruction.

6.3. Overall System Accuracy
To evaluate the overall performance of Beyond Text (and
comparative baselines) across the entire benchmark dataset,
the overall accuracy, Aoverall, is computed. This is the av-
erage of the task-level accuracies A(Tj) for all evaluated
tasks Tj in the dataset:

Aoverall =
1

NT

NT∑
j=1

A(Tj) (3)

where NT is the total number of unique tasks evaluated in
the dataset. This multi-level evaluation strategy (subtask,
task, and overall) provides a nuanced understanding of the
system’s capabilities and pinpoints areas of strength and po-
tential failure.

7. Benchmark Dataset Construction: Mul-
tiRefEditBench

To rigorously evaluate the capabilities of Beyond Text in
handling indirect multimodal references, we constructed a

new benchmark dataset, termed MultiRefEditBench. The
generation of this dataset was a structured, multi-step pro-
cess designed to ensure a diverse range of editing tasks, ref-
erence types, and contextual scenarios.

7.1. Initial Prompt Generation and Curation
The foundation of our dataset lies in the main textual
prompts (Pmain) that describe the editing tasks.
1. Automatic Prompt Generation: We utilized a Large

Language Model (LLM), specifically GPT-4o, to gener-
ate a wide array of structured prompts. These prompts
were designed to cover various editing operations (e.g.,
object replacement, recoloration, removal, detection)
and to necessitate the use of different combinations of
multimodal references (image, audio, text). The LLM
was guided to create scenarios where the references pro-
vided indirect cues crucial for task completion.

2. Manual Curation and Refinement: Each LLM-
generated prompt underwent a thorough manual review
and curation process by human annotators. This step was
critical to:
• Ensure logical feasibility and clarity of the editing in-

structions.
• Verify that the references described were plausible and

could realistically guide the edit.
• Refine ambiguous phrasing and ensure that the

prompts were challenging yet unambiguous for an
ideal system.

7.2. Generation of Image and Multimodal Refer-
ence Materials

Once the main textual prompts were finalized, the corre-
sponding visual and other reference materials were gener-
ated:
1. Input Image Generation (Iin): For each curated

prompt, a synthetic input image was generated using
Meta AI’s generative image models. Human annotators
provided detailed textual descriptions to the image gen-
eration model, derived from the prompt, to ensure that:
• All key objects and scene elements mentioned or im-

plied in the prompt (and its references) were present in
the generated image.

• The visual content was clear and suitable for the in-
tended editing operations.

2. Image Reference Generation (ri - image modality):
When a task required an image reference, a separate im-
age was generated, again using Meta AI models, specif-
ically to contain the visual cue (e.g., a specific style,
color, or object) mentioned in Pmain.

3. Text Reference Generation (ri - text modality): For
tasks requiring textual references (e.g., a story from
which an attribute is to be inferred), GPT-4o was em-
ployed to generate relevant text snippets. These were

crafted to be contextually consistent with the main
prompt and the input image.

4. Audio Reference Generation (ri - audio modality):
Generating specific audio references presented a unique
challenge. Our process involved:
• Searching online repositories and sound effect li-

braries for audio clips matching the descriptions in the
prompts (e.g., a specific animal sound, a type of musi-
cal instrument).

• Manually editing these clips, which sometimes in-
volved trimming, isolating specific sounds, or concate-
nating multiple clips to create the desired audio refer-
ence.

• Ensuring the audio quality was sufficient for clear in-
terpretation.

All generated images and reference materials were manu-
ally reviewed to ensure they aligned with the curated prompt
and were suitable for the benchmark. This iterative process
of prompt generation, curation, and multimodal asset cre-
ation, with human oversight at each step, allowed us to build
a dataset tailored to evaluating indirect multimodal refer-
ence grounding.

7.3. Dataset Status and Overview
The construction of MultiRefEditBench is an ongoing ef-
fort. To date, we have curated approximately seventy
unique image editing tasks, each comprising an input im-
age, a main textual prompt, and one or more multimodal
references. We are continuously working to expand the
dataset to cover an even broader range of complexities and
reference combinations.

A detailed breakdown of the dataset’s current distribu-
tion, including the types of editing tasks and the combina-
tions of reference modalities, is provided in Figure 4.

8. Algorithms for Beyond Text Framework
This section provides pseudocode for the two main stages
of the Beyond Text framework: Stage 1 (Intelligent Mul-
timodal Reference Interpretation) and Stage 2 (Grounded
Execution Program Generation).

Algorithm 1: Stage 1: Intelligent Multimodal Ref-
erence Interpretation

Input: Pmain (main textual prompt), R (set of
multimodal references)

Output: Sref (structured, tagged reference
information)

LLMagent ← Initialize LLM agent;
Progref analysis ← empty list of program steps;
identified queries←

LLMagent.AnalyzeForReferenceCues(Pmain, R)
foreach query info ∈ identified queries do

ref data←
GetRelevantReferenceData(query info, R);

subtask tool←
LLMagent.SelectReferenceAnalysisTool(query info,

Cref);
tool params←
LLMagent.FormulateToolParameters(query info,

ref data) output var name←
LLMagent.DetermineOutputVarName(query info)
e.g., ”ansX description” or ”tempY”
modality tag← empty string;

if output var name starts with ”ans” then
modality tag←
LLMagent.DetermineModalityTag(query info, R)
Tag based on original reference ri

AddStepToProgram
(Progref analysis, output var name, subtask tool,
tool params, modality tag)

Sref ← empty map;
execution context← empty map foreach

step ∈ Progref analysis do
current ref data←

ResolveData(step.tool params.ref input,
execution context, R) result
← ExecuteTool(step.

tool, current ref data,
step.tool params.other) execution context[step.

output var name]← result;
if step.output var name starts with ”ans” then

Sref [step.output var name]←
{value: result,modality: step.modality tag};

return Sref ;

9. LLM Prompt for Stage 1: Reference Analy-
sis Program Generation

The following text is the detailed prompt provided to the
Large Language Model (LLM) to guide the generation of
the ‘Prog ref analysis‘ (Reference Analysis Program). This

Algorithm 2: Stage 2: Grounded Execution Pro-
gram Generation

Input: Pmain (main textual prompt), Sref

(structured, tagged reference information)
Output: Progexec (list of editing commands)

LLMagent ← Initialize LLM agent;
grounded Pmain ← Pmain;
foreach (ans id, info) ∈ Sref do

placeholder←
LLMagent.FindPlaceholderInPrompt(ans id, Pmain)
Identifies part of Pmain corresponding to
ans id grounded Pmain ←
Replace(grounded Pmain, placeholder, info.value);

editing actions←
LLMagent.IdentifyEditingActions(grounded Pmain);

Progexec ← empty list of editing commands;
foreach action ∈ editing actions do

command←
LLMagent.SelectEditingCommand(action, Cedit);

command params←
LLMagent.ExtractCommandParameters(action,

grounded Pmain);
AddCommandToList(Progexec, command,
command params)Guidedbyfew − shotexamples

return Progexec;

program is central to Stage 1 of the Beyond Text framework,
as described in Section 3.2. The prompt outlines the task,
expected inputs (including the main prompt Pmain, multi-
modal references R, and available tools Cref), the precise
output structure for ‘Prog ref analysis‘, key rules for vari-
able naming and modality tagging, the reasoning process
the LLM should follow, and several few-shot examples to
illustrate the desired behavior.

You are an expert AI agent responsible for interpreting complex user instructions that involve multimodal
references. Your primary task is to generate a structured ”Reference Analysis Program” (Prog ref analysis).
This program will be executed to extract specific, salient information from provided multimodal references,
which will then be used to ground the user’s main textual instruction.

Your Goal
Given a main textual prompt (P main) from the user and a set of available multimodal references (R), generate a
Prog ref analysis. This program should be a sequence of steps, where each step invokes a specific reference analysis
tool to extract information.

Inputs You Will Receive
1. P main (Main Textual Prompt):
∗ A natural language string containing the user’s primary instruction. This prompt will often contain phrases that

refer to information that needs to be extracted from the multimodal references.
∗ Example: ”Change the color of the car to the one shown in reference image ‘r 1‘ and replace the background

music with the genre described in reference text ‘r 2‘.”
2. R (Set of Multimodal References):
∗ A list or dictionary of available references. Each reference will have:
◦ An identifier (e.g., ‘r 1‘, ‘r 2‘, ‘r 3‘).
◦ A type (e.g., ‘image‘, ‘audio‘, ‘text‘).
◦ (The actual data for the reference will be available to the tools during execution, not directly in this prompt).
∗ Example:
◦ ‘r 1‘: type ‘image‘ (e.g., a picture of a blue car)
◦ ‘r 2‘: type ‘text‘ (e.g., ”The desired music genre is upbeat jazz.”)
◦ ‘r 3‘: type ‘audio‘ (e.g., a sound clip of a bird chirping)

3. C ref (Available Reference Analysis Subtask Tools):
∗ A predefined list of tools you can use in your program. Each tool has specific parameters.
∗ Available Tools:
◦ ReferenceVQA(ref image id, question): Answers a textual ‘question‘ about the image identi-

fied by ‘ref image id‘.
◦ ReferenceAQA(ref audio id, question): Answers a textual ‘question‘ about the audio clip iden-

tified by ‘ref audio id‘.
◦ ReferenceTextQA(ref text id or variable, question): Answers a textual ‘question‘ about

the text identified by ‘ref text id or variable‘ (this can be an initial reference ID like ‘r 2‘ or an output variable
from a previous step).

◦ TrimAudioSegment(ref audio id, start time, end time): Extracts a segment from the au-
dio clip ‘ref audio id‘. ‘start time‘ and ‘end time‘ are in seconds.

Output Program (Prog ref analysis) Structure
Your generated program must be a sequence of lines, each representing a tool call. The format
for each line is: output variable name = ToolName(param1=value1, param2=value2, ...,
modality tag="tag if final ans")

Key Rules for ‘output variable name‘ and ‘modality tag‘

1. Final Answer Variables:
∗ If a step directly extracts a piece of information that is needed to resolve a reference in P main (i.e., it’s a

”final answer” for a part of the multimodal query), its ‘output variable name‘ MUST follow the convention:
‘ans¡N¿ ¡descriptive suffix¿‘.
◦ ‘¡N¿‘ is a sequential number (1, 2, 3,...).
◦ ‘¡descriptive suffix¿‘ should briefly indicate what the answer represents (e.g., ‘ans1 color from image‘,

‘ans2 sound type‘, ‘ans3 object in text‘).
∗ For these ”ans” variables ONLY, you MUST include the ‘modality tag‘ parameter in the tool call.
◦ ‘modality tag‘ should be one of: ‘”image”‘, ‘”audio”‘, or ‘”text”‘.
◦ This tag MUST reflect the modality of the *original reference* (r i) from which this piece of information

was ultimately derived, even if intermediate steps involved other tools or modalities. For example, if you use
ReferenceTextQA on a caption generated by DescribeImage(r 1), and this answers a query about
r 1, the ‘modality tag‘ should still be ‘”image”‘.

2. Intermediate Variables:
∗ If a step produces an intermediate result that is used by subsequent steps in Prog ref analysis but is NOT itself a

final answer for P main, its ‘output variable name‘ should be different (e.g., ‘temp description‘, ‘trimmed clip‘,
‘extracted entities‘).
∗ Do NOT include the ‘modality tag‘ parameter in the tool call for these intermediate steps.

Your Reasoning Process to Generate ‘Prog ref analysis‘
1. Understand ‘P main‘: Carefully parse ‘P main‘ to identify all parts that require information from the references

in ‘R‘. Note down what information is needed and which reference it seems to relate to.
2. Plan Extraction Steps: For each piece of information needed:
∗ Select the correct reference from ‘R‘ (e.g., ‘r 1‘, ‘r 2‘).
∗ Choose the most appropriate tool from ‘C ref‘.
∗ Formulate the necessary parameters for the tool (e.g., the question for a QA tool, time for trimming).
∗ Determine if this step produces a ”final answer” for ‘P main‘.
◦ If YES: Name the output variable ‘ans¡N¿ ¡suffix¿‘ and add the correct ‘modality tag‘ parameter to the tool

call, reflecting the original reference’s type.
◦ If NO (it’s an intermediate result): Use a temporary variable name and do not add the ‘modality tag‘ param-

eter.
3. Handle Dependencies: Ensure steps are ordered correctly if one step depends on the output of another (e.g.,

‘TrimAudioSegment‘ before ‘ReferenceAQA‘ on the segment).
4. Construct the Program: Write out the sequence of tool calls line by line.

Few-Shot Examples
Example 1
∗ P main: ”Replace the animal in input image which is present in image reference ‘r 1‘ with the animal whose voice

is there in audio reference ‘r 2‘ between 5s and 10s. Also, detect the larger animal from the text story in reference
‘r 3‘.”
∗ R:
◦ ‘r 1‘: type ‘image‘ (contains a cat)
◦ ‘r 2‘: type ‘audio‘ (contains a hen’s cluck between 5s-10s)
◦ ‘r 3‘: type ‘text‘ (story about a lion and a frog, lion is bigger)

∗ Expected ‘Prog ref analysis‘:

ans1_image_animal = ReferenceVQA(ref_image_id=r_1, question="What animal is in this image?", modality_tag="image")
temp_audio_segment = TrimAudioSegment(ref_audio_id=r_2, start_time=5, end_time=10)
ans2_audio_animal = ReferenceAQA(ref_audio_id=temp_audio_segment, question="What animal makes this sound?", modality_tag="audio")
temp_text_animals = ReferenceTextQA(ref_text_id_or_variable=r_3, question="What animals are present in this text?")
ans3_text_larger_animal = ReferenceTextQA(ref_text_id_or_variable=temp_text_animals, question="Which animal is the bigger one?", modality_tag="text")

Example 2
∗ P main: ”Change the color of the sky in the input image to the dominant color found in reference image ‘r 1‘.

Then, identify the object making the sound in the provided audio reference ‘r 2‘ and add a small icon of this object
to the bottom-left corner. Finally, write a short, two-word poetic phrase related to the theme of reference text ‘r 3‘
at the top of the image.”
∗ R:
◦ ‘r 1‘: type ‘image‘ (sunset with orange/purple sky)
◦ ‘r 2‘: type ‘audio‘ (cat meowing)
◦ ‘r 3‘: type ‘text‘ (story about a lighthouse)

∗ Expected ‘Prog ref analysis‘:

ans1_sky_color = IdentifyDominantColor(ref_image_id=r_1, region_prompt="sky", modality_tag="image")
ans2_sound_object = ReferenceAQA(ref_audio_id=r_2, question="What animal or object is making this sound?", modality_tag="audio")
temp_theme_extraction = ReferenceTextQA(ref_text_id_or_variable=r_3, question="What is the main theme or subject of this text in one or two words?")
ans3_poetic_phrase = ReferenceTextQA(ref_text_id_or_variable=temp_theme_extraction, question="Generate a short, two-word poetic phrase about this theme.", modality_tag="text")

Example 3 (from user provided image)
∗ P main: ”Replace the object from audio reference ‘r 2‘ with the larger vehicle present in the image reference ‘r 3‘

and then detect it. Also, remove the animal from text reference ‘r 1‘.”
∗ R:
◦ ‘r 1‘: type ‘text‘ (discusses a ”dog”)
◦ ‘r 2‘: type ‘audio‘ (contains sound of a ”car” between 2s-7s)
◦ ‘r 3‘: type ‘image‘ (shows different vehicles, a ”truck” is the largest)

∗ Expected ‘Prog ref analysis‘:

ans1_text_animal_to_remove = ReferenceTextQA(ref_text_id_or_variable=r_1, question="What is the object being discussed that needs to be removed?", modality_tag="text")
temp_trimmed_audio = TrimAudioSegment(ref_audio_id=r_2, start_time=2, end_time=7)
ans2_audio_object_to_replace = ReferenceAQA(ref_audio_id=temp_trimmed_audio, question="What object is making the sound in this audio clip?", modality_tag="audio")
temp_vehicles_in_image = ReferenceVQA(ref_image_id=r_3, question="What kinds of vehicles are present in this image?")
ans3_image_larger_vehicle = ReferenceTextQA(ref_text_id_or_variable=temp_vehicles_in_image, question="Which of these vehicles is the bigger one?", modality_tag="image")

—
Now, given the following P main, R, and C ref, please generate the Prog ref analysis.

	Introduction
	Related Work
	Agentic Frameworks for Vision & Language Tasks
	Large Multimodal Models & Multimodal Understanding
	Multimodal Grounding & Instruction Following

	The Beyond Text Framework
	Framework Overview and Motivation
	Stage 1: Intelligent Multimodal Reference Interpretation
	Mechanism and Program Structure
	Supported Reference Analysis Subtasks (Cref)

	Stage 2: Grounded Execution Program Generation
	Mechanism and Program Structure
	Supported Image Editing Commands (Cedit)

	Execution of Editing Plan

	Experiments & Results
	Experimental Setup
	Evaluation Criteria & Methodology
	Emphasis on Human Assessment
	Baselines
	Results and Analysis
	Ablation Studies

	Conclusion
	Human Evaluation Methodology for Accuracy Calculation
	Subtask-Level Accuracy Scoring
	Task-Level Accuracy Calculation
	Overall System Accuracy

	Benchmark Dataset Construction: MultiRefEditBench
	Initial Prompt Generation and Curation
	Generation of Image and Multimodal Reference Materials
	Dataset Status and Overview

	Algorithms for Beyond Text Framework
	LLM Prompt for Stage 1: Reference Analysis Program Generation

