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Abstract

Efficient and accurate object detection in adverse weather conditions pose a sig-
nificant challenge in autonomous driving. This paper introduces a small convolu-
tional neural network model designed to predict the parameters of differentiable
image processing functions with the aim to defog the input images. By trans-
forming obscured images into clear visuals, our model facilitates more robust
object detection. We trained and evaluated our model using a dataset of foggy
images and obtained the output parameters for the differentiable image processing
function (DIP). Our results indicate improvement in detection speeds and signif-
icantly improved results on the foggy images. The source code can be found at
https://github.com/nussbau/CMSC472_Final

1 Motivation

Autonomous driving is an active field of research that could significantly reduce the amount of
traffic accidents that occur. Autonomous driving systems rely heavily on accurate object detection
mechanisms to navigate safely. However adverse weather conditions such as rain, fog significantly
impact the object detection capabilities of the autonomous driving systems and pose a serious risk to
the passengers. The image captured in an adverse weather condition can be decomposed into a clean
image and its corresponding weather specific information. The image if properly enhanced can reveal
more latent information and the misidentified objects can be recovered.

There is a need for an innovative solution that can swiftly enhance the images captured during adverse
weather conditions without sacrificing details. Addressing this, we introduce a small convolutional
neural network model that predict the parameters of differentiable image processing functions. This
model, specifically designed for applications in autonomous driving provide good results on foggy
images and also has a good detection speed when used with the original YOLO. By enabling clear
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vision during adverse weather conditions we aim to make autonomous vehicles safer and more
reliable in a wider range of environments.

2 Background

2.1 Object detection

Object detection plays a crucial role in autonomous driving systems, enabling the vehicles to detect
and classify its surroundings. Two main strategies are commonly employed for object detection,
namely, the two-stage and single-stage approaches. Two-stage approaches, such as the region-based
convolutional neural network (RCNN) and the Faster R-CNN, are widely adopted due to their high
accuracy. However, they often fall short of meeting the real-time processing requirements of object
detection in vehicular environments.

On the other hand, single-stage approaches, exemplified by you only look once (YOLO) and the
single shot detector (SSD), are renowned for their speed. These methods directly predict object
classes and bounding box coordinates from a single evaluation of the network. They achieve real-time
performance but may sacrifice some accuracy in certain scenarios. Despite their advantages, detecting
objects under challenging driving conditions remains a significant challenge for these single-stage
approaches

2.2 Object detection in adverse weather conditions

Research on object detection under adverse weather conditions has been relatively limited compared
to general object detection. A common approach involves preprocessing the image using classical
dehazing technique. Although this method improve image quality, they do not necessarily enhance
detection performance.

To address this, image enhancement and detection were combined to minimize the impact of weather-
related distortions. Furthermore, recognizing the domain shift between images taken in normal and
adverse conditions, some studies have adopted domain adaptation strategies. These methods adopt
the domain adaptation principles and focus on aligning the features of two distributions, and the
latent information which can be obtained in the process of weather-based image restoration is usually
ignored.

To address these limitations, we have implemented the Image-Adaptive YOLO for Object Detection
in adverse weather conditions.

2.3 Our approach

(a) Before passing through our defogger (b) After passing through our defogger

Figure 1: For the images captured in adverse weather conditions, our defogger model outputs clear
images aiding improved object detection
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To address the issues of object detection in adverse weather conditions, we implement a detection
framework that adapts to varying weather conditions by filtering out weather-specific interference and
uncovering hidden details. The model integrates three main components: a CNN-based parameter
predictor (CNN-PP), a differentiable image processing module (DIP), and a detection network.
The CNN-PP is trained on 367 images, out of which 2/3rds are foggy images. The input images
are resized to 256 × 256 and processed through the CNN-PP, which estimates the parameters for
the DIP. CNN-PP output gives parameters for classical differentiable defogging, white balancing,
gamma correction, toning, contrasting, and sharpening methods. The image, once processed by the
DIP module, serves as the input for the YOLO detector. A hybrid end-to-end training approach is
incorporated, which enables the CNN-PP to optimally adjust the DIP parameters for improved image
clarity in object detection. This method allows for effective image enhancement and improved object
detection for images captured in adverse weather conditions.

3 Model Architecture

Our model integrates three components to achieve the task of object detection in adverse weather
conditions. They are

• CNN-based parameter predictor (CNN-PP).

• Differentiable image processing module (DIP).

• Detection network module

Figure 2: Architecture of the integrated model for object detection in adverse weather conditions.
The model integrates a CNN-based Parameter Predictor, a Differentiable Image Processing module,
and a YOLOv5 detection network to enhance detection capabilities under challenging conditions.

3.1 CNN based parameter predictor

The CNN-PP (Convolutional Neural Network for Parameter Prediction) module is a crucial component
of our system, designed to efficiently extract meaningful features from input images. This module
leverages convolutional neural networks (CNNs) due to their proven capability in handling image
data and extracting hierarchical features.

3.1.1 Design

The CNN-PP module consists of a series of convolutional blocks, each followed by a non-linear
activation function, specifically Leaky ReLU, to introduce non-linearity into the model, thus allowing
it to learn more complex patterns in the data.
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3.1.2 Layers

The module initiates with a convolutional layer with a kernel size of 3x3, stride of 2, and padding
of 1. This layer maps the 3-channel input image to a 16-channel feature map, effectively doubling
the depth while reducing the spatial dimensions by half, considering the stride. Subsequent layers
follow a similar pattern, gradually increasing the channels from 16 to 32 while maintaining the kernel
size and padding, thus focusing on extracting finer details as the network deepens. The use of Leaky
ReLU with a negative slope of 0.01 ensures that the network retains gradient flow during training,
which can often vanish in deep networks using standard ReLU. Following the convolutional layers,
the feature maps are flattened into a vector and passed through fully connected layers. The first
dense layer transforms the flattened features to a 128-dimensional space, followed by a Leaky ReLU
to maintain non-linearity. The final output layer consists of a linear transformation to the desired
number of outputs, which in this context is set to 16, representing specific parameters required for the
subsequent DIP (Deep Image Processing) module.

3.2 Differentiable Image Processing Module

The hyperparameters predicted by the CNN-PP module are then passed to the DIP module. The DIP
module consists of six differentiable filters with adjustable hyperparameters, including Defog, White
Balance(WB), Gamma, Contrast, Tone and Sharpen.

3.2.1 Image Defogging

This filter attempts to remove fog from an image by estimating the scene’s transmission and atmo-
spheric light. The atmospheric light is estimated by finding the brightest pixels in the image. The
transmission map is estimated and refined to recover the clear image from the foggy input image.

3.2.2 Image white balance adjustment

This filter adjusts the white balance of the image to correct color cast of images taken under different
light sources. The filter scales each color channel by a factor, which is derived from the learned
parameters. Additionally we have added a Sigmoid function to squeeze all values for white
balance between 0 & 1. This is so that no value goes to 0 and a gradient is maintained
everywhere.

3.2.3 Image gamma correction

This filter adjusts the gamma values of the image which are useful in correcting the exposure of the
image. It applies a power-law transformation to each pixel of the image and adjusts the brightness
according to the gamma parameter predicted by the CNN-PP. In this filter, we have added a Relu
function so that there are no negative values whose exponents are evaluated.

3.2.4 Image tone mapping

This filter maps the tones of the high dynamic range image to the displayable range, maintaining the
details in both bright and dark areas. The tone mapping function adjusts the intensity of the image
based on the tone parameters, effectively compressing the dynamic range of the image.

3.2.5 Image contrast enhancement

This filter enhances the contrast of the image by scaling the intensity of the pixels. The image contrast
is adjusted by scaling the pixel values with a factor alpha and then adding a bias beta, both of which
are learned parameters from the CNN-PP.

3.2.6 Image sharpening

This filter enhances the edges and details of the image by applying a high-pass filter. A Gaussian blur
is applied to the image first, and the difference between the original and blurred image is scaled by a
factor lambda and added back to the original image to enhance sharpness.
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3.3 Detection Network Module

The detection network incorporated is YOLOv5, a one-stage detector commonly used in the field
of autonomous driving and other real time applications. The architecture of YOLOv5 is modular,
consisting of a backbone, a neck, and a head, which are optimized for speed and accuracy.

The backbone of YOLOv5 is based on the CSPDarknet53 architecture. This backbone is enhanced
with Cross Stage Partial networks (CSP), which help reduce the model’s complexity and improve
its computational efficiency. The neck of the architecture employs the PANet (Path Aggregation
Network) design. This component aggregates the different levels of feature information, ensuring
that the high-resolution context from early layers can be combined with the deeper, more semantic
features from later layers. The head of the YOLOv5 model makes the final predictions. It processes
the aggregated feature maps to predict bounding boxes, object classes, and prediction scores.

4 Implementation

Our implementation of the Image-Adaptive YOLO model involves the following:

• Building the CNN-PP and DIP modules from scratch.

• Using the YOLOv5 architecture from Ultralytics to perform Object Detection.

• Training the entire model on a custom dataset containing Foggy + Underwater + Coco
images.

We have taken a variety of images in our dataset so that the model can be trained to perform detection
is a wide range of environments.

5 Results

To gauge the effectiveness of our model, the outputs are compared with that of the original YOLOv5.
We can observe significantly improved outcomes on foggy and underwater images when utilizing
YOLO trained with the DIP module. These results can be seen in Figure 3.

Figure 3: The above image shows the difference between the predictions of the different models.
It can be seen that the YOLO which is trained on our custom dataset along with the DIP module
predicts larger number of objects.

The training of our model was also quite stable, with losses reducing as expected. We also got high
values on the performance metrics of the model such as mean Average Precision and F1 score. The
original YOLO gave a mAP50 of 0.98 and mAP50-95 of 0.8.

The metrics were slightly reduced when compared with training only on foggy data because the
underwater dataset we used had a lot of light reflection. Due to this, the detection performance was
hindered. However, the model has managed to train fairly smoothly. As it can be seen below, the
mAP50 has reduced to 0.738 and the mAP50-95 to 0.5.
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(a) Before passing through our defogger

(b) After passing through our defogger

(c) After passing through our defogger

Figure 4: For the images captured in adverse weather conditions, our defogger model outputs clear
images aiding improved object detection
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6 Conclusion

We have successfully implemented the Image-Adaptive YOLO architecture as proposed by Liu et
al. (2022) and trained it on a wide range of images which include foggy, underwater and Coco-style
images. The model achieved a mean Average Precision score of approximately 0.7. It was able to
detect almost 50% of the classes with high accuracy. The outputs of the DIP module showed that
our implementation was able to correctly defog the images based on the parameters learnt by the
CNN-PP module during training.
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