Real Time Semantic Segmentation using Efficient Neural Network

Rishie Raj
Maryland Applied Graduate Engineering
University of Maryland
College Park, MD 20740

rraj27@umd.edu

Abstract

Semantic segmentation is a computer vision task that in-
volves labeling each pixel in an image with a correspond-
ing class. Real time semantic segmentation builds on the
foundations of semantic segmentation. Popular deep neu-
ral network architectures for semantic segmentation do not
transcend well for real time semantic segmentation because
of their large inference time. We have implemented Effi-
cient neural network (E-Net) which is specifically designed
for tasks requiring low latency operation. The network has
less parameters and better inference time than the popular
U-Net and SegNet architectures that are used for segmenta-
tion task.

1. Introduction

Semantic segmentation is a popular computer vision task
in the field of autonomous driving, medical imaging and ur-
ban planning. It provides pixel level categorization in which
each and every pixel in an input image is labeled for a par-
ticular class thereby providing the spatial and contextual re-
lationships within an image. Real time semantic segmen-
tation is derived from an image segmentation tasks with
additional time constraints. Achieving real-time perfor-
mance involves significant challenges, including optimizing
computational efficiency, reducing latency, and maintaining
high accuracy despite the constraints.

Several advanced architectures have been developed to
address these challenges and enhance the performance
of real-time semantic segmentation. Also the availabil-
ity of larger datasets and computationally-powerful ma-
chines have helped these networks perform good for im-
age segmentation. Models like Fully Convolutional Net-
works (FCNs), U-Net, SegNet, DeepLab are the popular
ones for image segmentation task. FCNs replace fully con-
nected layers in traditional CNNs with convolutional lay-
ers to maintain spatial information. They were the first to
show that CNNs could be trained end-to-end for pixel-wise

Uthappa Madettira
Maryland Applied Graduate Engineering
University of Maryland
College Park, MD 20740

uthu@umd.edu

prediction. U-Net architecture, employs a encoder-decoder
structure with skip connections to recover spatial resolu-
tion lost during down-sampling. Similar to U-Net, SegNet
uses an encoder-decoder architecture but focuses on effi-
cient up-sampling using indices from max-pooling layers.
All these architectures are based on VGG16 architecture,
which is a very large model designed for multi-class classi-
fication. These networks have large number of parameters
and have huge inference time making them not suitable for
real time tasks. Also deep architectures with numerous pa-
rameters can consume substantial memory. Enet which is
a lightweight network is designed specifically for real time
applications and achieves high performance with low com-
putational requirements.

ENet adopts an encoder-decoder architecture specifically
optimized for speed and efficiency. The encoder com-
presses the input image into a lower-dimensional represen-
tation, capturing essential features while reducing the com-
putational load. The decoder then upsamples this represen-
tation to produce the final pixel-wise segmentation map. By
using techniques such as early downsampling, dilated con-
volutions, and factorized filters, ENet reduces the number
of parameters and floating-point operations required. This
streamlined approach allows ENet to perform up to 18 times
faster than comparable architectures like SegNet, with sig-
nificantly fewer computational resources.

2. Architecture

ENet is designed for efficient real-time semantic seg-
mentation, focusing on speed and low computational over-
head. The ENet architecture has the following building
blocks:

2.1. Building Blocks
2.1.1 Initial Block

The ENet architecture begins with the Initial Block, which
is designed for efficient downsampling and feature expan-
sion. It consists of two parallel branches: the main branch

and the extension branch. The main branch performs a 3x3
convolution with a stride of 2, which effectively reduces the
spatial dimensions of the input while producing 13 feature
maps. Concurrently, the extension branch applies a max-
pooling operation with the same stride, generating 3 fea-
ture maps. These two outputs are concatenated to form
a 16-channel feature map. This concatenation is followed
by batch normalization to ensure the stability of the net-
work and a non-linear activation function, either ReLLU or
PReLU, depending on the specified parameter. This combi-
nation allows for efficient processing and ensures that criti-
cal spatial information is retained in the early stages of the
network.

Input

N

3x3, stride 2 MaxPooling

HHH\H“Hh.Urf’””#’f

Concat

Figure 1. Initial Block

2.1.2 Regular Bottleneck

Regular bottleneck is the fundamental building block of
ENet, crucial for maintaining the balance between computa-
tional efficiency and the network’s representational power.
Each regular bottleneck consists of a main branch, which
acts as a shortcut connection, and an extension branch that
performs the main convolutions. The extension branch
starts with a 1x1 convolution that reduces the number of
channels by a specified internal ratio, known as projection.
This step is followed by a 3x3 convolution, which can be
regular, dilated (to increase the receptive field without ad-
ditional computational cost), or asymmetric (split into two
convolutions, such as 5x1 and 1x5, to reduce computational
overhead while maintaining a large receptive field). The ex-
tension branch concludes with another 1x1 convolution that
restores the original number of channels, known as expan-
sion. To prevent overfitting, dropout is applied at this stage.
The output from the extension branch is then added to the
main branch output, batch normalized, and passed through
a ReLU or PReLU activation function. This structure al-
lows the network to efficiently learn complex representa-
tions while maintaining low computational costs.

1x1

¢F’H9LU
r |
: MaxPooling I conv
____________ ¢F’FI9LU
| |
: Padding : 1x1

)

Regularizer
+
PRelLU

Figure 2. Standard Bottleneck Block

2.1.3 Downsampling Bottleneck

The downsampling bottleneck is designed to reduce the
spatial dimensions of the feature map while increasing the
number of channels. This is crucial for capturing more ab-
stract features at different levels of the network. In the main
branch, a max-pooling operation with a stride of 2 is ap-
plied, and the pooling indices are stored for use in the cor-
responding upsampling bottleneck later in the network. The
extension branch begins with a 2x2 convolution with stride
2, which projects the input into a lower-dimensional space.
This is followed by a 3x3 convolution, which can be di-
lated or asymmetric, similar to the regular bottleneck. The
extension branch concludes with a 1x1 convolution that ex-
pands the feature map back to the desired number of chan-
nels. Batch normalization and dropout are applied to ensure
stability and prevent overfitting. The outputs from the main
and extension branches are concatenated, batch normalized,
and activated using PReLU, providing a rich, abstract rep-
resentation of the input data at reduced spatial dimensions

2.1.4 Upsampling Bottleneck

The upsampling bottleneck mirrors the downsampling bot-
tleneck, focusing on increasing the spatial resolution of the
feature maps. In the main branch, a 1x1 convolution is
applied to the input to project it into a lower-dimensional
space, followed by max unpooling using the indices stored
during the downsampling stage. The extension branch be-
gins with a 1x1 convolution for projection, followed by

a transposed convolution (also known as deconvolution)
which effectively upsamples the feature map. Another 1x1
convolution is then applied to expand the feature map back
to the desired number of channels. Batch normalization and
dropout are used to maintain stability and prevent overfit-
ting. The outputs from the main and extension branches are
then added together, batch normalized, and passed through
a PReL.U activation function, ensuring that the upsampled
feature maps are both accurate and computationally effi-
cient.

2.2. ENet Model

The full ENet model is structured to progressively en-
code the input image into a lower-dimensional representa-
tion and then decode it back to the original resolution with
pixel-wise classifications.

1. Initial Block: The input image is first processed by the
initial block, which performs efficient downsampling
and feature expansion.

2. Stage 1 (Encoder): This stage includes a downsam-
pling bottleneck followed by regular bottlenecks, grad-
ually reducing the spatial dimensions while increasing
the depth of the feature maps.

3. Stage 2 (Encoder): Further downsampling is per-
formed, followed by regular, dilated, and asymmet-
ric bottlenecks to capture complex features at multiple
scales.

4. Stage 3 (Encoder): This stage continues with similar
bottlenecks without additional downsampling, main-
taining the depth and complexity of the feature maps.

5. Stage 4 (Decoder): The first upsampling stage uses
upsampling bottlenecks to increase the spatial dimen-
sions of the feature maps, making use of the indices
stored during downsampling.

6. Stage 5 (Decoder): The final upsampling stage re-
stores the feature maps to the original input size, fol-
lowed by a transposed convolution that produces the
final segmentation output

3. Implementation

The ENet architecture that was discussed in the earlier
sections was implemented in Pyforch in a python notebook.
The datasets were downloaded and arranged in a required
folder structure. The model was then trained as per the fol-
lowing details:

Name Type Output size

initial 16 x 256 x 256
bottleneck1.0 downsampling 64 x 128 x 128
4 x bottleneck].x 64 x 128 x 128
bottleneck2.0 downsampling 128 x 64 x 64
bottleneck?2.1 128 x 64 x 64
bottleneck2.2 dilated 2 128 x 64 x 64
bottleneck2.3 asymmetric 5 128 x 64 x 64
bottleneck2.4 dilated 4 128 x 64 x 64
bottleneck2.5 128 x 64 x 64
bottleneck2.6 dilated 8 128 x 64 x 64
bottleneck2.7 asymmetric 5 128 x 64 x 64
bottleneck2.8 dilated 16 128 x 64 x 64

Repeat section 2, without bottleneck2.0

bottleneck4.0 upsampling 64 x 128 x 128
bottleneck4.1 64 x 128 x 128
bottleneck4.2 64 x 128 x 128
bottleneck5.0 upsampling 16 x 256 x 256

bottleneck5.1 16 x 256 x 256

C x 512 x 512

fullconv

Figure 3. Structure of the model implementation used

Dataset Type Number of Images
Training 367
Validation 101
Testing 233

Table 1. Dataset split

3.1. Dataset

For training this model we used the CamVid dataset
which has the below mentioned split of data:

The original images had a resolution of 360 x 480, but
they were resized to 512 x 512 before feeding them into the
network. This is because a convolutional neural network
is better at capturing spatial and semantic information in a
square-sized image.

3.2. Hyperparameters

The following hyperparameters were tuned to optimize
the performance of the model.

1. Learning Rate: An optimal learning rate is really im-
portant for proper loss convergence of a model because
a high learning rate will lead to the model blowing up
whereas a low learning rate might not converge the

model. We found that the best results were seen at a
learning rate of 5 x 104

2. Batch Size: The batch size decides the number of im-
ages that are passed to the model in a single train-
ing/validation iteration. We have kept the batch size
as 5 for two reasons. One, the gradient descent is
performed higher number of times during training and
hence the model converges faster. Second, as this is a
convolutional network and was trained on an NVIDIA
RTX 3060 graphics card with 6GB of memory, the
GPU frequently ran out of memory on higher batch
sizes.

3. Momentum: For updating parameters during training,
we used the ADAM optimizer with a weight decay of
2 x 10~%. The weight decay is an important hyper-
parameter which ensures that the gradient descent pro-
ceeds in the direction of past trends of gradient. This
helps the optimizer minimize the losses much faster.

Finally we ran the model for 100 epochs on the training
and validation dataset and saw the losses converging quite
nicely in both the training and validation sets.

4. Results

Based on the model that we have implemented as
described earlier, we were able to achieve a decent per-
formance on real-time semantic segmentation of the test
data from the CamVid dataset. It contains a total of 599
images which could be processed by our implemented
model at 10 FPS (frames per second). This signifies
that real-time processing capabilities were displayed by
the model. The segmentation mask video which shows
this result has been linked here: https://drive.
google.com/file/d/1FQidlf5rgZjHdSQhCbD -
0594d85F2fhJ/view?usp=sharing.

Our model has performed fairly well on the test set by

giving a Per-Pixel accuracy of 75%. Per-Pixel accuracy is
defined by the following formula:

Number of correctly classified pixels

Pixel A =
ixel Accuracy Total number of pixels

However, there is a drawback of per-pixel accuracy met-
ric. It is very sensitive to class imbalances and most large-
scale datasets such as the CamVid dataset have class imbal-
ances in some of their images. In order to account for this
drawback, in image segmentation tasks, other metrics such
as Intersection over Union (loU) and Dice score are calcu-
lated. These metrics are not sensitive to class imbalances

as they focus on overlap areas rather than pixel-wise match-
ing. IoU in particular, emphasises the precision of delin-
eating object boundaries. They are given by the following
formulae:

Area of Overlap between G.T. and Pred.

I =
© Area of Union between G.T. and Pred.

F1/Dice Score — 2 x Precision x Recall

Precision + Recall

The values of these metrics based on our results has been
shown in the table below. These results prove that we have
achieved a decent performance on the segmentation task,
despite making the model extremely lightweight for real-
time applications.

Evaluation Metric Value
Pixel Accuracy 75.44%
F1/Dice Score 0.64
ToU 0.515

Table 2. Evaluation Metric Table

Finally the inferences that we ran on the model for the
test data gave us the segmentation masks. A comparison of
the predicted masks for the input images against the ground
truth has been shown below:

Input

Pred. Mask

Figure 4. Comparison of input images, ground truths, and predic-
tion masks.

5. Conclusion

In this project, we have implemented the ENet architec-
ture as described earlier. Our aim was to build a model for
semantic segmentation task that could be used in real-time.

https://drive.google.com/file/d/1FQidlf5rqZjHdSQhCbD-O594d85F2fhJ/view?usp=sharing
https://drive.google.com/file/d/1FQidlf5rqZjHdSQhCbD-O594d85F2fhJ/view?usp=sharing
https://drive.google.com/file/d/1FQidlf5rqZjHdSQhCbD-O594d85F2fhJ/view?usp=sharing

For this we made the model lightweight by down-sampling
aggressively early and performing all the convolution oper-
ations on the scaled-down images so that it would be com-
putationally inexpensive. The feature maps were then up-
sampled rapidly in a few blocks to achieve the segmenta-
tion masks of the same size as the input images. The per-
formance metrics that we achieved on the testing dataset
were discussed and it can be seen that the results are quite
promising.

6. References

[1] Paszke, A. & Chaurasia, A. (2016) ENet: A Deep Neu-
ral Network Architecture for Real-Time Semantic Segmen-
tation In: arXiv:2112.08088.

[2] Simoyan, K. & Zisserman, A. (2014) Very deep con-
volutional networks for large-scale image recognition In:
arXiv:1409.1556.

[3] Badrinarayanan, V., Handa, A. &Cipolla, A. (2015) Seg-
net: A deep convolutional encoder-decoder architecture for
image segmentation. In: arXiv:1511.00561.

[4] Krizhevsky, A. & Sutskever, 1. (2016) Imagenet clas-
sification with deep convolutional neural networks In: Ad-
vances in Neural Information Processing Systems 25, 2012,
pp. 1097-1105

	. Introduction
	. Architecture
	. Building Blocks
	Initial Block
	Regular Bottleneck
	Downsampling Bottleneck
	Upsampling Bottleneck

	. ENet Model

	. Implementation
	. Dataset
	. Hyperparameters

	. Results
	. Conclusion
	. References

