ENPM673: Final Project

Rishie Raj

Uthappa Madettira

Group-11

Content

- Background
- Network Architecture
- Results
- Metrics
- Challenges

Background

Previous Models

Unet

Encoder-Decoder structure with a bottleneck

SegNet

Encoder-Decoder structure based on VGG16

Issues

Large models with a huge number of parameters Long inference time

ENet: Efficient Net

FCN architecture with Encoder/Decoder modules *Chaurasia et al. (2016)*

ENet - Differences

Uses filter factorization

Uses 1 x 1 convolution operation

Uses PReLU's

ENet - Architecture

Initial stage

Early reduction of input size to save computation time

Concatenation of feature maps from 3x3 convolution and max-pooling

ENet - Architecture

Encoder

Incorporates bottleneck blocks

Performs downsampling and captures the semantic content

ENet - Architecture

Decoder

Incorporates bottleneck blocks

Performs upsampling to increase the resolution of feature maps

Full convolution layer at the end to produce segmented output

Segmentation outputs

ENet - Segmentation output

Input image

Ground truth

Output

ENet - Segmentation output

Input image

Ground truth

Output

Real-Time Output

Video Link

Metrics

Metrics

METRIC	SCORE	IoU	Dice Coefficient
Per Pixel Accuracy	75.5%		2 x
F1 score	0.639		
IoU	0.515		+

Challenges

Making model lightweight

Training a ConvNet on limited GPU memory

Optimizing hyper-params for performance

Thank You

