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Abstract

As Al-generated content becomes increasingly pervasive, distinguishing between
Al-generated and human-captured images is a critical challenge. This paper
introduces a novel approach to detecting Al-generated images based on cross-
perplexity and perplexity computations. Leveraging LlamaGen, a state-of-the-art
autoregressive image generation model, the proposed framework utilizes tokeniza-
tion, vision encoding, and class-conditioned starting tokens to compute detection
metrics that reliably identify synthetic visual content. Preliminary results indicate
the effectiveness of this approach in a zero-shot setting, highlighting its poten-
tial for broad applicability without dependence on training data from generative
models.

1 Introduction

Al-generated content has proliferated into every sphere of media consumption and it is becoming in-
creasingly difficult to distinguish between human-captured and synthetic visual content. Advances
in autoregressive and diffusion-based generative models such as LlamaGen, GANs, Stable Diffu-
sion, DALL-E and MidJourney have enabled the creation of highly realistic images. While these
models have a lot of creative and practical applications, they are also being used for nefarious pur-
poses such as spreading misinformation, deepfakes and harmful synthetic media content. This has
resulted in a growing demand for reliable and generalizable detection mechanisms that can iden-
tify synthetic images from a variety of model families, including models having unseen or novel
architectures.

Most of the existing detection methods are designed on a supervised paradigm and their classifiers
are trained on labeled datasets containing real and synthetically generated images. While these ap-
proaches work for images generated by specific models, they do not generalize well to detecting
images generated by unseen models. These supervised learning approaches learn features and ar-
tifacts of images generated by the respective generation models and hence they fail when they see
images from architectures that were not part of their training dataset. Also, the issue with supervised
training is that it requires a lot of labeled traning data which is not often practical.

In order to overcome these challenges, we have come up with an approach that uses a zero-shot
detection strategy already implemented in the language domain Hans et al. [3]. The Binoculars
approach uses perplexity and cross-perplexity metrics to measure the level of certainty of token
sequences. The underlying assumption for this approach is that human and machine-generated con-
tent will have different measures of these metrics. Perplexity is a concept of language modeling
which measures how “surprising” a token sequence is to a given language model. Meanwhile,
cross-perplexity gives the same measure for different model outputs against each other.

In this paper, we have integrated the Binoculars approach with LlamaGen, an autoregressive image
generation model. LLamaGen is used to tokenize images into a sequence using a vector-quantized



autoencoder (VQ-VAE). This allows us to calculate perplixity and cross-perplexity in the same way
as was done for text token sequences in Hans et al. [I3]. We follow the Binoculars appraoch, wherein
we have chosen an observer from the LlamaGen family of models. The token sequences of the
images generated by all our test models, called performers, are contrasted with the observer to cal-
culate the perplexity and cross-perplexity. By comparing the outputs of performer models against
the expectations of the observer, we can identify the deviations in natural and synthetic data distri-
butions. This helps us detect synthetic content without actually traning on any model-specific data,
in a zero-shot detection setting.

In summary, this report details the adaptation of the Binoculars approach to the image domain and
its integration with LlamaGen to calculate perplexity-related metrics for a wide-range of image
generative models for synthetic image detection. The key contributions of this work are as follows:

1. Adaptation of Perplexity-Based Detection: We adapted a two novel metrics, namely
perplexity and cross-perplexity, developed for language domain, into the image domain by
tweaking the tokenizing mechanism.

2. Integration with LlamaGen: We have used the LlamaGen tokenization approach to cal-
culate the decision metrics from the synthetically generated images.

3. Evaluation on Diverse Generative Models: We have validated our appraoch on images
generated by a wide range of models such as LlamaGen, Stable Diffusion, DALL-E and
Emu3, getting promising results. This highlights the ability of our approach to generalize
well to different models.

4. Zero-Shot Detection: Our approach does not require any training procedure, hence mak-
ing it fast, efficient and generalizable.

2 Related Work

All existing approaches in the Al-image detection space primarily rely on supervised learning. While
this is effective within specific domains, it struggles to generalize to images from unseen generative
models. These limitations come from the fact that supervised detectors tend to overfit to model-
specific artifacts, while their reliance on large amounts of labeled training data make them highly
impractical to obtain and train.

In order to address these challenges, researchers are exploring zero-shot detection methods that do
not require labeled synthetic data for training. Cozzolino et al. [2] introduced a Zero-Shot Entropy-
based Detector (ZED), where pixel-level probability distributions are predicted using a lossless im-
age encoder. By measuring the uncertainty or entropy of a synthetic image and comparing it with
the expected coding costs of a real image, ZED achieves robust detection across various generative
models such as DALL-E, MidJourney, and Stable Diffusion, without training.

On the other hand, pre-trained Vision-Language Models (VLMs) like CLIP have shown great gen-
eralization capabilities in detecting synthetic images. Cozzolino et al. [[1] utilized CLIP features in
a lightweight framework to differentiate synthetic images with high accuracy across unseen archi-
tectures. Ojha et al. [4] expanded on this idea by showing that linear probing and nearest-neighbor
methods in VLM feature spaces can outperform traditional classifiers, particularly for diffusion-
based generators and GAN-based models. These methods prove that there is potential for zero-shot
methods to replace supervised paradigms by solving their limitations.

There is a huge diversity in contemporary image generative models, such as GANSs, diffusion mod-
els, and autoregressive models. This poses a complex challenge for detection. Supervised classifiers
often fail to capture the minute differences in statistical patterns between different generative fam-
ilies. For example, detectors trained on GAN-based images may misclassify diffusion-generated
images due to differences in noise distribution and artifact characteristics. Ojha et al. mentioned
these limitations and emphasized the need for detectors to treat all real and synthetic images with
equal importance, rather than treating real and synthetic classification as a binary problem.

An interesting innovation happened with the adaptation of perplexity, which is a language modeling
concept, for detecting Al-generated language content. This concept was first shown in Binoculars,
which uses perplexity and cross-perplexity metrics to measure the predictability of token sequences.
This approach helped them classify real and synthetic text content in a zero-shot fashion. By com-



paring the differences between two closely related models (observer and performer), Binoculars was
able to identify the subtle patterns that indicate synthetic content without requiring model-specific
training.

Inspired by this approach, our work extends the use of perplexity-based metrics to the image do-
main. By integrating the Binoculars framework with the autoregressive capabilities of LlamaGen,
we tokenize images into sequences and calculate these metrics over image tokens. This adaptation
enables robust detection of synthetic content across diverse generative models, including unseen
architectures such as Stable Diffusion, DALL-E, and Emu3.

3 Methodology

Similar to how large language models (LLMs) tend to generate text that appears predictable to an
LLM, autoregressive image generation models often create images that are predictable to similar
models. Conversely, human-created images can exhibit less predictable features, resulting in higher
perplexity when assessed by an Al observer. This makes raw perplexity an attractive metric for
distinguishing human-created images, as higher perplexity can suggest human authorship.

However, this intuition falters when context-specific cues, akin to hand-crafted prompts in text, are
involved. For instance, a model conditioned on a specific context, such as “blue skies with a single
bird,” might generate an image that aligns perfectly with that prompt, resulting in low perplexity.
But without knowledge of the prompt, the generated image may seem highly surprising, leading to
falsely categorizing it as human-created. Similarly, an image containing unexpected combinations,
such as “a panda riding a bicycle in the desert,” may exhibit high perplexity in the absence of its
conditioning prompt, causing naive perplexity-based detection to fail.

Relying solely on raw perplexity for Al-generated image detection can lead to significant inac-
curacies without considering the conditioning context. This is where cross-perplexity comes into
play—by contrasting the predictability of the same image across models with shared contexts, we
can mitigate the biases introduced by missing prompts, enabling a more reliable detection frame-
work.

3.1 Framework and Model Setup

We employ two models, viz. performer and observer model, from the LlamaGen family of models
based on an autoregressive framework for image generation, as the backbone of our detection metric.
The dual-model setup allows us to compute cross-perplexity, capturing discrepancies in token pre-
dictabilﬁy between models. The methodology incorporates two distinct models from the LlamaGen
family

* Performer Model: This model is used to generate the logits which are in-turn used in
perplexity calculation.
— Model Used: LlamaGen-L

* Observer Model: This model is used to generate logits which are then used to calculate
the cross-perplexity. This calculation also involves the logits generated by the performer
model.

— Model Used: LlamaGen-B

This dual-model setup allows us to compute cross-perplexity, capturing discrepancies in token pre-
dictability between models.

3.2 Tokenization and Input Processing

Our framework employs the LlamaGen vision encoder to tokenize each input image into a sequence
of discrete tokens, suitable for processing by an autoregressive generation model. For this generation
process, we condition the model on predefined class labels. These labels are transformed into token

"https://github.com/Foundation Vision/LlamaGen
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Figure 1: Model Setup

sequences, which serve as starting points for the autoregressive sampling process. The model gen-
erates a sequence of tokens based on these initial inputs, capturing the distributional characteristics
of the image data.

During the sampling process, we employ standard autoregressive techniques to generate predictions
for each token in the sequence. The generated token sequences are subsequently decoded into image
representations using a vector quantized (VQ) decoder, ensuring the outputs are consistent with the
tokenized structure. Class-conditioned initialization and controlled sampling ensure reliable logits
which are key to perplexity and cross-perplexity computation for comparing observer and performer
models.

3.3 Perplexity and Cross-Perplexity Computation

The proposed methodology relies on two key metrics to detect synthetic images: perplexity and
cross-perplexity. These metrics evaluate the predictability of token sequences and discrepancies in
token predictability, respectively.

Perplexity. Perplexity measures how well the performer model predicts the token sequences gen-
erated by an input image. Given a sequence of tokens t = {1, s, ..., ¢y} with N tokens, and the
probability P(¢;|t1.,—1) assigned by the performer model to each token ¢;, the perplexity PPL is
computed to captures how “expected” the token sequence is according to the performer model, with
lower perplexity indicating higher predictability. On a logarithmic scale, we have:

L
1
log PPLj;(s) = I E log(Yia, ), (D
i=1

where

* M is alanguage model that predicts the next token in a sequence by outputting a probability
distribution over the vocabulary V' = {1,2,...,n},

* Yi; = P(vj | zo.1—1) is the probability assigned by M to the token v; € V, conditioned
on the preceding tokens zg.;—1,

* x; is the i-th token ID in the tokenized input sequence & = T'(s), where T is the tokenizer,
L is the total number of tokens in the sequence s,

* Y., is the probability assigned by M to the actual ¢-th token x;.

Cross-Perplexity. Cross-perplexity evaluates the alignment between the token predictions of the
performer model and their surprisal when evaluated by the observer model. The cross-perplexity
CPPL is computed using the conditional entropy on a logarithmic scale:

1 L
log X-PPL s, 01, (S) = 7 Z My (S)Z . log(M2(5)i), 2
i=1



where

e M; and M, are two language models being compared,

* sis the input string, and & = T'(s) is the tokenized form of s,
» L is the total number of tokens in the sequence s,

* M (s); represents the i-th token probability predicted by M,
* My(s), represents the i-th token probability predicted by Mo,

log X-PPL s, a1, (s) measures the average per-token cross-entropy between the outputs of
M and M.

Ratio. We compute the ratio of perplexity to cross-perplexity, defined as Binocular Score by Hans
et al. [3]:

_ logPPLyy, (s)
o IOg X-PPL]\/Il My (S) ’

3)

Bty v, (8)

Lower values of R(t) suggest high alignment between the performer and observer models, indicative
of Al-generated images. Higher values indicate greater unpredictability as observed by the observer
model, characteristic of human-authored content.

Implementation. The computation pipeline involves the following steps:

1. Logit Processing: Both the observer and performer models process token sequences to
generate logits, which are used for entropy and probability calculations.

2. Perplexity Computation: The observer model computes perplexity by aggregating prob-
abilities of the token sequence.

3. Cross-Perplexity Computation: The conditional entropy of the observer’s logits, as eval-
uated by the observer, yields the cross-perplexity.

4. Metric Aggregation: The perplexity and cross-perplexity scores are combined to compute
R(t) as the detection metric.

By leveraging both perplexity and cross-perplexity, the framework effectively distinguishes between
human-authored and Al-generated content without reliance on labeled training data.

4 Results and Analysis

Based on our model setup as earlier, we have calculated two metrics for classification, Perplexity
and Cross-Perplexity. Our goal is to get a clear segregation between the data-points for real and
synthetic images in a perplexity vs. cross-perplexity plot.

For classification of real and fake, we used a evaluation metric called Binoculars Score from Hans
et al. [3]], which is basically the ratio between the perplexity and the cross-perplexity. As can see
from the plot, we have managed to derive fairly reasonable zones for real and synthetic images. The
blues indicate real images and oranges indicate synthetic images. The plot is also inline with our
intuitive reasoning, which is that, real images are supposed to have higher perplexity scores w.r.t.
autoregressive models as their probability distribution is quite different than synthetic images, as
evidenced by [4} 12, (1,15, 6] and hence are more “’surprising” for generative models.

In Table [I| we have shown the true-positive rates (TPR) at a particular false-positive rate (FPR)
threshold. This highlights the effectiveness of our framework, especially at a stricter threshold of
0.1FPR. Our model demonstrates a strong ability to detect synthetic content while minimizing false
positives, outperforming both the baseline models from Wang et al. [6] and Ricker et al. [5]. In
Table [2| our framework shows a consistent performance across multiple models.
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Table 1: Comparison of TPR Metrics Across Methods

Name TPR@0.1FPR TPR@O0.5FPR
Ours 0.7171 0.9543
DIRE 0.1543 0.4600
AEROBLADE 0.4629 0.8114

Table 2: Comparison of Accuracy Metrics Across Methods

GAN LlamaGen

0.6660 0.8027
1.0000 0.5513

Name Diffusion

Ours 0.7272
Ojha 0.5909




5 Conclusion

In our work, we have introduced a novel framework for detecting synthetically-generated images
by adapting perplexity and cross-perplexity metrics, which was originally developed for language-
based detection, into the image domain. Using the capabilities of the LlamaGen family of autore-
gressive models, we have shown how tokenization and autoregressive generation could be used to
compute robust detection metrics without following a supervised training approach. The results also
show that our approach performs competitively in a zero-shot setting, achieving better detection ac-
curacy compared to baseline methods at both strict (0.1FPR) and relaxed (0.5FPR) thresholds. By
combining the strengths of perplexity with cross-perplexity computation, our framework general-
izes effectively across diverse generative architectures, creating a promising future for scalable and
efficient synthetic content detection.

6 Future Work

While our preliminary results have been quite promising, we have to extend our experiments on a
much larger dataset. As of now, we have tested our model on 5000 images (1000 real and 4000
synthetic). It remains to be seen if we can achieve a good separation with higher number of images.
Also, we are planning to add another metric along with perplexity and cross-perplexity, to create a
better separation between the data-points. This is help us in coming up with a more robust decision
boundary even with a larger testset. Finally, as of now, we are using an SVM to classify the images
based on the decision score. As this SVM has to be trained on the testset, it takes away from our
purpose to make our framework truly zero-shot. We want to come up with an approach where this
classification method does not need to be learnt.
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